Vasovagal Oscillations and Vasovagal Responses Produced by the Vestibulo-Sympathetic Reflex in the Rat
نویسندگان
چکیده
Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.
منابع مشابه
Vestibular Activation Habituates the Vasovagal Response in the Rat
Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long-Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated ac...
متن کاملThe vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves.
Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, ...
متن کاملVasovagal Syncope As A Manifestation Of An Evolutionary Selected Trait.
Some observations suggest that typical (emotional or orthostatic) vasovagal syncope (VVS) is not a disease, but rather a manifestation of a non-pathological trait. We conducted an extensive bibliographic research on the vasovagal reactions in animals, including humans, in order to investigate the possible factors that may explain the origin and evolution of VVS. We found two processes which app...
متن کاملThe vasovagal response.
The vasovagal response is the development of inappropriate cardiac slowing and arteriolar dilatation. Vasovagal responses reflect autonomic neural changes: bradycardia results from sudden augmentation of efferent vagal activity, and hypotension results from sudden reduction or cessation of sympathetic activity and relaxation of arterial resistance vessels. Two different neural pathways are thou...
متن کاملWhat Does Galvanic Vestibular Stimulation Actually Activate: Response
et al., 2012). The sense of roll is consistent with a host of other studies using GVS (Fitzpatrick et al., 1994; Inglis et al., 1995; Day et al., 1997; Zink et al., 1997; Day and Cole, 2002; Scinicariello et al., 2002/2003; Wardman et al., 2003a,b; see Fitzpatrick and Day, 2004 for review). Modeled on this research, we used 2–3 mA currents in lightly anesthetized rats and found strong activatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014